Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1,1-Diethoxyethane and 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K

Yeming He, Ruifen Jiang, Yangyi Yang, Zhongqi Huang, and Gangfeng Ouyang*

School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

Densities and surface tensions for binary mixtures of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene with 1,1-diethoxyethane and 2,2-dimethoxypropane have been measured over the whole concentration range. Measurements were made under normal atmospheric pressure at (298.15, 308.15, and 313.15) K. The experimental data are used to calculate the excess molar volumes and the surface tension deviations, respectively.

Introduction

The density, surface tension, and excess properties are crucial physical properties since they play an important role in the process of the mass and heat transfer at an interface, such as in liquid—liquid extraction, gas absorption, and distillation. In this work, densities and surface tensions of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene with 1,1-diethoxyethane, and 2,2-dimethoxypropane at different temperatures [(298.15, 308.15 and 313.15) K] are determined. The excess molar volumes and the surface tension deviations of these systems have been calculated and fitted to the Redlich—Kister polynomials. There is no detailed report about the excess properties of the studied systems in the open literature.

Experimental Section

All the chemicals 1,2,4-trimethylbenzene (Acros Organics), 1,3,5-trimethylbenzene (Acros Organics), 1,1-diethoxyethane (Acros Organics), and 2,2-dimethoxypropane (Alfa Aesar) are commercially available and used without further purification. The mass fractions of the substances, determined by a PE autosystem XL gas chromatograph, were as follows: 1,2,4-trimethylbenzene (99.20 %), 1,3,5-trimethylbenzene (99.30 %), 1,1-diethoxyethane (99.21 %), and 2,2-dimethoxypropane (99.12 %). All of the binary mixtures studied were prepared by mass using an Ohaus E12140 balance with an uncertainty of \pm 0.0001 g. The relative atomic masses issued by IUPAC in 2001 were applied for the conversion of the masses to the mole fractions. The uncertainty of the mole fraction is estimated within \pm 0.0001 in all cases.

Densities of the pure liquids and their mixtures were measured with an Anton Paar (Austria, DMA 4500) vibrating-tube densimeter where a built-in solid-state thermostat is used to obtain an uncertainty of \pm 0.01 K. The estimated uncertainty of the densities is about 5×10^{-5} g·cm⁻³. The surface tensions were determined by the pendant drop method, using a Data Physics OCA20 (Germany) contact angle and surface tension measuring device. The uncertainty of the device is \pm 0.05 mN·m⁻¹. The experimental densities and surface tensions of the pure substances are tabulated in Table 1 and compared with the literature values.

* Corresponding author. Telephone/fax: +86-20-84110953. E-mail: cesoygf@mail.sysu.edu.cn.

Table 1.	Densities (p)	and Surface	Tensions (σ) of the l	Pure
Compone	ents at Experi	mental Tem	peratures		

	ρ/g•	cm ⁻³	$\sigma/{ m ml}$	$N \cdot m^{-1}$
substance	exptl.	lit.	exptl.	lit.
	T = 298.	15 K		
1,2,4-trimethylbenzene	0.87171	0.87164^{3}	29.30	29.25^{1}
-		0.87178^{5}		29.29^{3}
		0.87174^{6}		29.20^{7}
1,3,5-trimethylbenzene	0.86112	0.86103 ¹	28.05	27.55^{7}
		0.86104^{2}		28.09^{3}
		0.86114^{5}		
		0.86109^{8}		
1,1-diethoxyethane	0.82196		20.88	20.89^{7}
2,2-dimethoxypropane	0.84509	0.847^{7}	21.46	
	T = 308.1	15 K		
1,2,4-trimethylbenzene	0.86368	0.863675	28.24	28.17^{7}
1,3,5-trimethylbenzene	0.85294	0.85290^{5}	27.21	26.657
1,1-diethoxyethane	0.81148		19.89	19.86^{7}
2,2-dimethoxypropane	0.83441		20.43	
• • •	T = 313	15 K		
1.2.4-trimethylbenzene	0.85958	0.85954^2	27.71	27.67^{2}
1,2,1 unitedity is ended	0100700	0.0070	2/1/1	27.66^7
1.3.5-trimethylbenzene	0.84882	0.84874^{2}	26.78	26.82^{2}
-,-,-,				26.207
1.1-diethoxyethane	0.80618		19.42	19.34^{7}
2.2-dimethoxypropane	0.82899		19.91	

Results and Discussion

The excess molar volumes $(V^{\rm E})$ are determined by densities and molar masses by the following equantion:⁹

$$V^{\rm E} = \frac{x_1 M_1 + x_2 M_2}{\rho} - \frac{x_1 M_1}{\rho_1} - \frac{x_2 M_2}{\rho_2} \tag{1}$$

where $V^{\rm E}$ is the excess molar volume; x_i and M_i are mole fraction and molar mass of the component *i*, respectively; ρ and ρ_i are density of the mixture and the *i*th pure component, respectively; and the subscript *i* (*i* = 1 or 2) represents component 1 or 2. The experimental excess molar volumes for the four binary mixtures (1,1-diethoxyethane + 1,2,4-trimethylbenzene, or + 1,3,5-trimethylbenzene and 2,2-dimethoxypropane + 1,2,4-trimethylbenzene, or + 1,3,5-trimethylbenzene) at temperatures of (298.15, 308.15, and 313.15) K are listed in Table 2. The curves of the excess molar volumes versus the composition of these binary systems at the experimental temperature are shown in Figure 1.

Table 2. Experimental Excess Molar Volumes (V	V^{E}) at	Tem	peratures o	of (298.15.	308.15	, and	313.1	5)	Κ
---	---------	------	-----	-------------	------	---------	--------	-------	-------	----	---

	VE		V ^E		VE		V ^E		V ^E		$V^{\rm E}$		$V^{\rm E}$
x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^{3} \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$
		-				T =	298.15 K	-		-		-	
				1	1-Diethoxyet	hane (1) -	+ 1 2 4-Trime	ethylbenze	ene (2)				
0.0500	-0.046	0.2005	-0.167	0.3526	-0.245	0.5034	-0.278	0.6519	-0.270	0.8003	-0.209	0.9399	-0.090
0.1000	-0.090	0.2511	-0.199	0.4010	-0.263	0.5513	-0.281	0.7012	-0.255	0.8491	-0.178		
0.1510	-0.130	0.3005	-0.225	0.4538	-0.275	0.5998	-0.280	0.7499	-0.237	0.9000	-0.138		
				1,	1-Diethoxyet	hane (1) -	+ 1,3,5-Trime	ethylbenze	ene (2)				
0.0491	-0.004	0.1996	-0.014	0.3501	-0.019	0.4997	-0.023	0.6508	-0.023	0.8014	-0.020	0.9487	-0.008
0.1013	-0.007	0.2501	-0.015	0.4067	-0.021	0.5523	-0.024	0.7006	-0.023	0.8510	-0.017		
0.1538	-0.011	0.3009	-0.018	0.4506	-0.022	0.6010	-0.024	0.7507	-0.023	0.8994	-0.015		
				2,2-	Dimethoxypr	opane (1)) + 1,2,4-Trii	nethylben	zene (2)				
0.0523	-0.010	0.1996	-0.030	0.3494	-0.047	0.4994	-0.056	0.6508	-0.058	0.7992	-0.044	0.9489	-0.017
0.0998	-0.016	0.2517	-0.038	0.3987	-0.051	0.5498	-0.056	0.6997	-0.054	0.8508	-0.037		
0.1497	-0.023	0.3009	-0.043	0.4502	-0.053	0.5996	-0.058	0.7498	-0.051	0.8997	-0.029		
				2,2-	Dimethoxypr	opane (1)) + 1,3,5-Trii	nethylben	zene (2)				
0.0500	0.026	0.2001	0.086	0.3496	0.125	0.4998	0.141	0.6506	0.137	0.7993	0.095	0.9494	0.022
0.1002	0.047	0.2520	0.102	0.3998	0.134	0.5497	0.145	0.7002	0.127	0.8511	0.073		
0.1494	0.067	0.3001	0.115	0.4525	0.139	0.5996	0.142	0.7503	0.114	0.8986	0.050		
						T =	308.15 K						
				1,	1-Diethoxyet	hane (1) -	+ 1,2,4-Trime	ethylbenze	ene (2)				
0.0488	-0.049	0.2003	-0.178	0.3499	-0.267	0.5016	-0.312	0.6514	-0.305	0.8007	-0.240	0.9488	-0.109
0.0993	-0.096	0.2497	-0.214	0.4004	-0.286	0.5500	-0.313	0.7003	-0.291	0.8502	-0.208		
0.1486	-0.141	0.3001	-0.244	0.4534	-0.303	0.6017	-0.313	0.7498	-0.270	0.8989	-0.166		
				1,	1-Diethoxyet	hane (1) -	+ 1,3,5-Trime	ethylbenze	ene (2)				
0.0488	-0.006	0.1991	-0.023	0.3503	-0.033	0.5011	-0.039	0.6511	-0.041	0.7977	-0.034	0.9418	-0.014
0.1009	-0.011	0.2498	-0.026	0.4004	-0.036	0.5503	-0.040	0.6997	-0.039	0.8462	-0.030		
0.1495	-0.017	0.3014	-0.030	0.4508	-0.037	0.5979	-0.041	0.7503	-0.037	0.8993	-0.024		
				2,2-	Dimethoxypr	opane (1)	+ 1,2,4-Trii	nethylben	zene (2)				
0.0515	-0.011	0.2001	-0.040	0.3512	-0.064	0.4989	-0.079	0.6518	-0.080	0.7962	-0.062	0.9456	-0.023
0.0998	-0.020	0.2475	-0.049	0.3955	-0.069	0.5542	-0.081	0.6987	-0.077	0.8510	-0.051		
0.1499	-0.031	0.3020	-0.059	0.4485	-0.076	0.5998	-0.082	0.7455	-0.072	0.8973	-0.039		
0.05.00	0.000		0.075	2,2-	Dimethoxypr	opane (1)	+ 1,3,5-Trii	nethylben	zene (2)		0.007	0.0400	0.000
0.0562	0.020	0.2023	0.075	0.3497	0.107	0.4964	0.123	0.6502	0.118	0.7999	0.086	0.9492	0.020
0.0995	0.039	0.2502	0.088	0.3982	0.115	0.5495	0.120	0.7006	0.111	0.8492	0.066		
0.1401	0.057	0.3002	0.099	0.4499	0.120	0.0001	0.124	0.7454	0.101	0.0990	0.044		
						T =	313.15 K						
				1,	1-Diethoxyet	hane (1) -	+ 1,2,4-Trime	ethylbenze	ene (2)				
0.0498	-0.057	0.2003	-0.205	0.3505	-0.306	0.4990	-0.353	0.6503	-0.352	0.7998	-0.294	0.9497	-0.136
0.0992	-0.110	0.2496	-0.242	0.4000	-0.327	0.5463	-0.356	0.7002	-0.340	0.8507	-0.256		
0.1501	-0.161	0.3027	-0.277	0.4501	-0.343	0.0011	-0.358	0.7491	-0.319	0.8990	-0.209		
0.0407	0.000	0.1000	0.000	1,	1-Diethoxyet	hane (1) -	+ 1,3,5-Trime	ethylbenze	ene (2)	0.7006	0.014	0.0400	0.021
0.0487	-0.009	0.1999	-0.029	0.3501	-0.042	0.5000	-0.049	0.6506	-0.050	0.7996	-0.044	0.9498	-0.021
0.0991	-0.017	0.2408	-0.034	0.4008	-0.044	0.5495	-0.050	0.7005	-0.049	0.8494	-0.040		
0.1507	-0.025	0.3001	-0.039	0.4302	-0.047	0.0005	-0.031	0.7514	-0.047	0.9003	-0.034		
0.0506	_0.012	0.1004	_0.040	2,2-	Dimethoxypr	copane(1)	+ 1,2,4-Trin -0.005	nethylben	zene(2)	0 7007	-0.075	0.0407	_0.020
0.0000	-0.013	0.1994	-0.049 -0.061	0.3473	-0.079	0.5000	-0.093	0.0304	-0.090	0.7967	-0.075	0.9467	-0.029
0.1509	-0.023	0.3032	-0.071	0.4501	-0.097	0.5993	-0.100	0.7486	-0.093	0.8929	-0.003		
5.1507	0.007	0.0002	0.071	0.1501	Dim et	(1)	1.1.2 C TT '		(2)	0.0727	0.040		
0.0511	0.010	0 2014	0.065	2,2-	O 007	0.5014	1,3,3-1	0.6489	12 ene(2) = 0.106	0 7004	0.075	0.9440	0.010
0.1023	0.019	0.2506	0.005	0.3960	0.104	0.5508	0.110	0.6988	0.100	0.8388	0.075	0.7440	0.019
0.1503	0.051	0.3013	0.090	0.4486	0.104	0.5931	0.112	0.7499	0.088	0.8976	0.040		
			0.020										

The experimental surface tensions (σ) and values of surface tension deviations ($\delta\sigma$) for the four binary mixtures (1,1diethoxyethane + 1,2,4-trimethylbenzene, or + 1,3,5-trimethylbenzene and 2,2-dimethoxypropane + 1,2,4-trimethylbenzene, or + 1,3,5-trimethylbenzene) at temperatures of (298.15, 308.15 and 313.15) K are listed in Table 3, respectively. The surface tension deviations are calculated by the following equation:¹⁰

$$\delta\sigma = \sigma - x_1\sigma_1 - x_2\sigma_2 \tag{2}$$

where $\delta\sigma$ is surface tension deviation; σ is surface tension of the binary system; x_1 and x_2 are mole fraction of components 1 and 2 in the mixture, respectively; and σ_1 and σ_1 are surface tension of pure components 1 and 2, respectively. The values

of surface tension deviations at the experimental temperature are graphically presented in Figure 2.

The experimental results of excess molar volumes and surface tension deviations over the whole mole fraction range are fitted by the Redlich–Kister¹¹ polynomial equation:

$$f(x) = x(1-x)\sum_{i=0}^{k} A_i(1-2x)^i$$
(3)

where f(x) represents the excess properties $V^{\rm E}$ or $\delta\sigma$, and A_i represents the parameters. A nonlinear least-squares method is used to estimate the parameters A_i . The standard deviations (*d*) between the calculated and the experimental values are defined

Table 3.	Experiment	tal Surface 1	Censions (0)	and Surfa	ce Tension I	Deviations (δσ) at Tem	peratures of	(298.15, 30	8.15, and 3	13.15) K						
	α	δσ		α	δσ		α	$\delta\sigma$		σ	$\delta\sigma$		α	$\delta \sigma$		α	$\delta \sigma$
x_1	$mN \cdot m^{-1}$	$mN \cdot m^{-1}$	x_1	$mN \cdot m^{-1}$	$mN \cdot m^{-1}$	x_1	mN•m ⁻¹	$mN \cdot m^{-1}$	x_1	$mN \cdot m^{-1}$	$mN \cdot m^{-1}$	x_1	mN•m ⁻¹	mN•m ⁻¹	x_1	mN•m ⁻¹	$mN \cdot m^{-1}$
								T = 29	98.15 K								
	00.00	00.0	2000		-	1.01010	,1-Diethoxy	Sthane $(1) + 1$	1,2,4-Trime	thylbenzene	(2)	00000	0310	000	1 0000	00.00	00 0
0.0500	28.51 28.51	-0.37	0.2511	25.71	-1.32 -1.48	0.4538	24.10 23.73	-1.70 -1.75	0.6519 0.6519	22.41 22.41	-1.40	0.8491	21.42 21.42	-0.73	1.0000	\$0.U2	0.00
0.1000 0.1510	27.76 26.97	-0.70 -1.06	0.3005 0.3526	25.14 24.60	-1.63 -1.73	0.5034 0.5513	23.35 23.01	-1.71 - 1.65	$0.7012 \\ 0.7499$	22.08 21.85	-1.32 -1.14	0.9000	21.21 21.09	-0.51 -0.30			
						1	.1-Diethoxy	thane $(1) +$	1,3,5-Trime	thylbenzene	(2)						
0.0000	28.05 27.45	-0.25	0.1996 0.2501	25.83 25.34	-0.79 -0.92	0.4067 0.4506	23.83 23.45	-1.30 -1.37	0.6010	22.26 21.92	-1.48 -1.46	0.8014 0.8510	21.20 21.09	-1.10 -0.86	1.0000	20.88	0.00
0.1013 0.1538	26.91 26.36	-0.41 -0.59	0.3009 0.3501	24.37 24.37	-1.08 -1.17	0.4997 0.5523	23.04 22.62	-1.43 -1.47	0.7006 0.7507	21.64 21.43	-1.39 -1.24	0.8994 0.9487	21.02 20.95	-0.58 -0.30			
00000		000	2001.0		(2,2	-Dimethoxy	propane (1) $+$	+ 1,2,4-Trim	lethylbenzen	e (2)				1 0000	10	00 0
0.0523	29.50 28.69	-0.20	0.2517	21.12 26.60	-0.02	0.4502	24.79	-0.98 -0.98	0.6508	23.17	-1.03 -1.03	0.8508	22.00 22.00	-0.79 -0.63	1.0000	21.40	0.00
0.0998 0.1497	28.17 27.62	-0.35 -0.51	0.3009 0.3494	26.13 25.68	-0.81 -0.88	0.4994 0.5498	24.37 23.95	-1.01 -1.04	0.6997 0.7498	22.82 22.51	-0.99 -0.91	0.8997 0.9489	21.79 21.62	-0.46 -0.24			
000000	20.00	000	1000.0		24	2,2	-Dimethoxy	propane (1) $+$	+ 1,3,5-Trin	lethylbenzen	e (2)				1 0000	10	00 0
0.0500	20.82 27.60	-0.12	0.2520	25.88 25.88	-0.40 - 0.51	0.4525	24.70 24.33	-0.72	0.6506 0.6506	23.20 22.93	-0.84 -0.83	0.8511	22.11	-0.6/	1.0000	21.40	0.00
0.1002 0.1494	27.14 26.72	-0.25 -0.35	0.3001 0.3496	25.47 25.10	-0.60 -0.65	0.4998 0.5497	23.98 23.62	-0.78 -0.81	0.7002 0.7503	22.64 22.37	-0.80 -0.74	0.8986 0.9494	21.70 21.57	-0.43 -0.22			
								T = 30)8.15 K								
						1	.1-Diethoxye	thane $(1) +$	1,2,4-Trime	thylbenzene	(2)						
0.0000	28.24 27.25	0.00	0.2003	25.09 24 51	-1.48 1.65	0.4004	23.02	-1.88	0.6017	21.54	-1.68	0.8007	20.46	-1.09	1.0000	19.89	0.00
0.0993	26.53	-0.88	0.3001	23.95	-1.78	0.5016	22.23	-1.82	0.7003	20.96	-1.43	2000.0	20.09	-0.64			
0.1486	25.79	-1.21	0.3499	23.47	-1.85	0.5500	21.90	-1.75	0.7498	20.72	-1.26	0.9488	19.95	-0.37			
0.0000	27.21	0.00	0.1991	24.86	-0.89	0.4004	,1-Diethoxye 22.89	ethane (1) + -1.39	1,3,5-Trime 0.5979	thylbenzene 21.25	(2) -1.58	77977	20.15	-1.22	1.0000	19.89	0.00
0.0488 0.1009	26.55 25.97	-0.30 -0.50	0.2498 0.3014	24.32 23.84	-1.06 -1.16	0.4508 0.5011	22.44 22.03	-1.47 -1.51	$0.6511 \\ 0.6997$	20.90 20.62	-1.54 -1.47	0.8462 0.8993	20.04 19.95	-0.98 -0.68			
0.1495	25.40	-0.72	0.3503	23.35	-1.30	0.5503	21.61	-1.57	0.7503	20.33	-1.39	0.9418	19.93	-0.39			
0.0000	28.24	0.00	0.2001	25.95	-0.73	2,2 0.3995	-Dimethoxy 24.12	propane (1) $+$ -1.03	+ 1,2,4-Trin 0.5998	lethylbenzen 22.40	e (2) -1.16	0.7962	21.11	-0.91	1.0000	20.43	0.00
0.0515	27.59 27.00	-0.25	0.2475	25.50	-0.81	0.4485	23.66 72.72	-1.08	0.6518	22.02 21.60	-1.13	0.8510	20.86	-0.73			
0.1499	26.47	-0.60	0.3512	24.53	-0.97	0.5542	22.77	-1.14	0.7455	21.07	-0.98	0.9456	20.55	-0.30			
						2,2	-Dimethoxy]	propane (1) +	+ 1,3,5-Trin	lethylbenzen	e (2)						
0.0000	27.21 26.65	0.00 -0.18	0.2023	25.29 24.87	-0.55 -0.64	0.3982 0.4499	23.71 23.31	-0.80	0.6001	22.17 21.85	-0.97	0.7999 0.8492	20.99 20.74	-0.80	1.0000	20.43	0.00
0.0995	26.21 25.77	-0.33 -0.44	0.3002 0.3497	24.49 24.06	-0.68	0.5493	22.95 22.54	-0.89 -0.95	0.7454	21.52	-0.94 -0.89	0.9492	20.57 20.48	-0.54 -0.29			

886 Journal of Chemical and Engineering Data, Vol. 52, No. 3, 2007

Table 3.	(Continued)																
	σ	δσ		σ	$\delta \sigma$		σ	δσ		σ	$\delta \sigma$		σ	$\delta \sigma$		σ	$\delta \sigma$
$^{\mathrm{I}}x$	mN•m ⁻¹	$mN \cdot m^{-1}$	x^{I}	mN•m ⁻¹	mN•m ⁻¹	x_1	mN•m ⁻¹	mN•m ⁻¹	x^{I}	mN•m ⁻¹	mN•m ⁻¹	x_1	mN•m ⁻¹	mN•m ⁻¹	x^{I}	mN•m ⁻¹	mN•m ⁻¹
								T = 31.	3.15 K								
						1,	.1-Diethoxye	thane $(1) + 1$	1,2,4-Trimet	hylbenzene	(2)						
0.0000	27.71	0.00	0.2003	24.46	-1.59	0.4000	22.43	-1.96	0.6011	20.95	-1.78	0.7998	19.91	-1.17	1.0000	19.42	0.00
0.0498	26.73	-0.57	0.2496	23.86	-1.78	0.4501	22.05	-1.93	0.6503	20.68	-1.64	0.8507	19.72	-0.94			
0.0992	25.91	-0.98	0.3027	23.34	-1.86	0.4990	21.67	-1.90	0.7002	20.40	-1.51	0.8990	19.53	-0.73			
0.1501	25.09	-1.38	0.3505	22.89	-1.91	0.5463	21.37	-1.81	0.7491	20.14	-1.36	0.9497	19.45	-0.39			
						Ι,	1-Diethoxye	thane $(1) + 1$	1,3,5-Trimet	hylbenzene	(2)						
0.0000	26.78	0.00	0.1999	24.37	-0.94	0.4008	22.38	-1.45	0.6005	20.73	-1.63	0.7996	19.63	-1.26	1.0000	19.42	0.00
0.0487	26.09	-0.33	0.2468	23.86	-1.10	0.4502	21.95	-1.52	0.6506	20.40	-1.59	0.8494	19.52	-1.01			
0.0991	25.49	-0.56	0.3001	23.34	-1.23	0.5000	21.54	-1.56	0.7005	20.11	-1.51	0.9003	19.48	-0.67			
0.1507	24.91	-0.76	0.3501	22.83	-1.37	0.5495	21.12	-1.62	0.7514	19.80	-1.45	0.9498	19.44	-0.35			
						2,2-	-Dimethoxyp	ropane (1) +	- 1,2,4-Trim	ethylbenzen	e (2)						
0.0000	27.71	0.00	0.1994	25.36	-0.79	0.3981	23.52	-1.08	0.5993	21.84	-1.20	0.7987	20.51	-0.97	1.0000	19.91	0.00
0.0506	27.03	-0.29	0.2511	24.87	-0.88	0.4501	23.07	-1.13	0.6504	21.45	-1.19	0.8417	20.31	-0.83			
0.0996	26.42	-0.51	0.3032	24.38	-0.97	0.5000	22.66	-1.15	0.6993	21.12	-1.14	0.8929	20.12	-0.63			
0.1509	25.86	-0.67	0.3475	23.95	-1.05	0.5487	22.25	-1.18	0.7486	20.80	-1.07	0.9487	19.97	-0.34			
						2,2-	-Dimethoxyp	ropane (1) +	- 1,3,5-Trim	ethylbenzen	e (2)						
0.0000	26.78	0.00	0.2014	24.79	-0.61	0.3960	23.19	-0.87	0.5931	21.68	-1.03	0.7994	20.40	-0.89	1.0000	19.91	0.00
0.0511	26.21	-0.22	0.2506	24.39	-0.67	0.4486	22.77	-0.93	0.6488	21.31	-1.01	0.8388	20.24	-0.78			
0.1023	25.71	-0.37	0.3013	23.95	-0.76	0.5014	22.36	-0.98	0.6988	20.99	-0.99	0.8976	20.00	-0.61			
0.1503	25.26	-0.49	0.3498	23.56	-0.82	0.5508	21.99	-1.01	0.7499	20.66	-0.97	0.9440	19.95	-0.34			

Figure 1. Plots of excess molar volumes (V^{E}) for 1,1-diethoxyethane (1) + 1,3,5-trimethylbenzene (2) at \blacksquare , 298.15 K; \blacklozenge , 308.15 K; and \blacktriangle , 313.15 K; 1,1-diethoxyethane (1) + 1,2,4-trimethylbenzene (2) at \square , 298.15 K; \square , 308.15 K; and \triangle , 313.15 K; 2,2-dimethoxypropane (1) + 1,3,5-trimethylbenzene (2) at \blacktriangledown , 298.15 K; \diamondsuit , 308.15 K; and left-facing solid triangle, 313.15 K; and 2,2-dimethoxypropane (1) + 1,2,4-trimethylbenzene (2) at \bigtriangledown , 298.15 K; \diamondsuit , 308.15 K; and left-facing solid triangle, 313.15 K; 308.15 K; and left-facing open triangle, 313.15 K.

Figure 2. Plots of surface tension deviations ($\delta\sigma$) for 1,1-diethoxyethane (1) + 1,3,5-trimethylbenzene (2) at **I**, 298.15 K; **•**, 308.15 K; and **▲**, 313.15 K; 1,1-diethoxyethane (1) + 1,2,4-trimethylbenzene (2) at **I**, 298.15 K; \bigcirc , 308.15 K; and \triangle , 313.15 K; 2,2-dimethoxypropane (1) + 1,3,5-trimethylbenzene (2) at **v**, 298.15 K; **•**, 308.15 K; and left-facing solid triangle, 313.15 K; and 2,2-dimethoxypropane (1) + 1,2,4-trimethylbenzene (2) at **v**, 298.15 K; **o**, 308.15 K; and left-facing open triangle, 313.15 K.

by the equation:¹²

$$d = \sqrt{\frac{\sum [f(x)_{calc} - f(x)_{expl}]^2}{(p-m)}}$$
(4)

where *p* represents the number of the experimental data, and *m* represents the number of the coefficients A_i used for fitting the experimental data in eq 3. The optimum number *m* of the A_i parameters (m = k + 1) was obtained through examination of the standard deviation *d*. Using five parameters can produce the best standard deviations between the calculated and the experimental excess properties. The coefficients A_0 , A_1 , A_2 , A_3 , and A_4 along with the corresponding root-mean-square deviations *d* are summarized in the Table 4.

Figure 1 shows that the excess molar volumes are negative for all the mixtures except for 2,2-dimethoxyproane + 1,3,5trimethylbenzene at (298.15, 308.15, and 313.15) K. The values of $V^{\rm E}$ at the whole composition range follow the order 1,1-

Table 4. Least-Squares Parameters (A_i) and Standard Deviations (d) of Excess Molar Volumes and Surface Tension Deviations at Virious Temperatures

	A_0	A_1	A_2	A_3	A_4	d
		T = 29	98.15 K			
$1,1-\mathrm{Di}$ $V^{\mathrm{E}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}}$ $\delta\sigma/\mathrm{mN}\cdot\mathrm{m}^{-1}$	iethoxyeth: -1.120 -6.84	ane $(1) + 0.146 -2.16$	1,2,4-Trin -0.114 -1.42	nethylbenz 0.259 1.05	ene (2) -0.139 2.29	0.002 0.02
1,1-Di $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	iethoxyetha -0.091 -5.73	ane (1) + 0.029 2.18	1,3,5-Trin -0.031 -0.76	nethylbenz 0.025 -1.57	ene (2) -0.017 1.50	0.001 0.02
2,2-Din $V^{\text{E}/\text{cm}^3\cdot\text{mol}^{-1}}$ $\delta\sigma/\text{mN}\cdot\text{m}^{-1}$	-0.224 -4.07	pane (1) + 0.067 1.19	+ 1,2,4-Tr −0.030 −1.47	imethylber 0.025 -0.86	nzene (2) -0.014 1.24	0.001 0.01
2,2-Din $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	nethoxypro 0.570 -3.15	pane (1) - -0.099 1.26	+ 1,3,5-Tr 0.066 −1.10	imethylber 0.142 -0.19	nzene (2) -0.196 0.52	0.001 0.01
		T = 30)8.15 K			
$1,1-\mathrm{Di}$ $V^{\mathrm{E}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}}$ $\delta\sigma/\mathrm{mN}\cdot\mathrm{m}^{-1}$	iethoxyetha -1.248 -7.30	ane $(1) + 0.210 -2.20$	1,2,4-Trin -0.022 -2.05	nethylbenz 0.398 0.61	ene (2) -0.502 0.32	0.004 0.01
1,1-Di $V^{\rm E}/{\rm cm^3\cdot mol^{-1}}$ $\delta\sigma/{\rm mN\cdot m^{-1}}$	iethoxyeth: -0.156 -6.09	ane (1) + 0.049 2.11	1,3,5-Trin -0.057 -1.83	nethylbenz 0.043 -1.55	ene (2) 0.005 1.57	0.001 0.017
2,2-Din $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	-0.317 -4.47	pane (1) + 0.113 1.24	+ 1,2,4-Tr −0.013 −1.72	imethylber 0.010 -1.12	nzene (2) -0.001 0.57	0.001 0.01
2,2-Din $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	0.493 -3.61	pane (1) ⊣ −0.089 1.44	+ 1,3,5-Tr 0.094 −1.86	imethylber 0.087 -0.05	nzene (2) -0.237 0.21	0.001 0.01
		T = 31	13.15 K			
$1,1-\mathrm{Di}$ $V^{\mathrm{E}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}}$ $\delta\sigma/\mathrm{mN}\cdot\mathrm{m}^{-1}$	iethoxyeth: -1.417 -7.58	ane $(1) + 0.259 -2.11$	1,2,4-Trin -0.163 -2.93	nethylbenz 0.640 -0.12	ene (2) -0.637 -0.20	0.003 0.02
$1,1-\mathrm{Di}$ $V^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$ $\delta\sigma/\mathrm{mN}\cdot\mathrm{m}^{-1}$	iethoxyeth -0.196 -6.31	ane (1) + 0.047 2.10	1,3,5-Trin -0.050 -2.17	nethylbenz 0.101 -1.79	ene (2) -0.123 1.73	0.001 0.02
2,2-Dim $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	nethoxypro -0.387 -4.65	pane (1) - 0.119 1.18	+ 1,2,4-Tr 0.018 −2.31	imethylber -0.047 -0.84	nzene (2) -0.059 0.02	0.001 0.01
2,2-Dim $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$ $\delta \sigma/\text{mN} \cdot \text{m}^{-1}$	nethoxypro 0.445 -3.90	pane (1) ⊣ −0.073 1.50	+ 1,3,5-Tr 0.037 −1.78	imethylber 0.082 -0.08	nzene (2) -0.016 -0.56	0.001 0.01

diethoxyethane + 1,2,4-trimethylbenzene < 2,2-dimethoxypropane + 1,2,4-trimethylbenzene < 1,1-diethoxyethane + 1,3,5trimethylbenzene < 2,2-dimethoxypropane + 1,3,5-trimethylbenzene. The minimum (or maximum) values of $V^{\rm E}$ for them are at about $x_1 \approx 0.55$. The $V^{\rm E}$ values are more negative with increasing temperature for all the binary mixtures.

Figure 2 illustrates that the surface tension deviations $\delta\sigma$ of all the binary systems investigated are negative at temperatures of (298.15, 308.15, and 313.15) K. The minimum values (at $x \approx 0.4$ or 0.55) of $\delta\sigma$ at the same temperature follow the

sequence 1,1-diethoxyethane + 1,2,4-trimethylbenzene < 1,1-diethoxyethane + 1,3,5-trimethylbenzene < 2,2-dimethoxypropane + 1,2,4-trimethylbenzene < 2,2-dimethoxypropane + 1,3,5-trimethylbenzene.

Supporting Information Available:

Density data of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene with 1,1-diethoxyethane and 2,2-dimethoxypropane at (298.15, 308.15, and 313.15) K. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Pan, C.; Ke, Q.; Ouyang, G.; Zhen, X.; Yang, Y.; Huang, Z. Excess molar volumes and surface tensions of trimethylbenzene with tetrahydrofuran tetrachloromethane and dimethyl sulfoxide at 298.15 K. J. Chem. Eng. Data 2004, 49, 1839–1842.
- (2) Deng, J.; Yang, Y.; Wang, P.; Ouyang, G.; Huang, Z. Excess molar volumes and surface tensions of trimethylbenzene + ethylene glycol ester at 298.15 K and 313.15 K. J. Chem. Eng. Data 2006, 51, 725– 729.
- (3) Deng, J.; Yang, Y.; He, Y.; Ouyang, G.; Huang, Z. Densities and surface tensions of trimethylbenzene + dimethyl carbonate or + diethyl carbonate at 298.15 K and 313.15 K. J. Chem. Eng. Data 2006, 51, 1464–1468.
- (4) Menke, T. J.; Funke, Z.; Majer, R. D.; Kressler, J. Surface tension measurements on ethene-butene random copolymers and different polypropenes. *Macromolecules* 2000, 33, 6120–6125.
- (5) Morávková, L.; Linek, J. Excess molar volumes of (benzene + isopropylbenzene, or 1,3,5-trimethylbenzene, or 1,2,4-trimethylbenzene) at temperatures between 298.15 K and 328.15 K. J. Chem. Thermodyn. 2001, 35, 1139–1149.
- (6) Anderko, A. Excess volumes of (phenol + butylbenzene or propylbenzene or isopropylbenzene or 1,2,4-trimethylbenzene or ethylbenzene) at 318.15 and 348.15 K. J. Chem. Thermodyn. 1990, 22, 55–60.
- (7) Dean, J. A. *Lange's Handbook of Chemistry*, 15th ed.; McGraw-Hill: New York, 1999.
- (8) Wilhelm, E.; Faradjzadeh, A.; Grolier, J. P. E. Molar excess heat capacities and excess volumes of 1,2-dichloroethane + cyclooctane, + mesitylene, and + tetrachloromethane. *J. Chem. Thermodyn.* **1979**, *11*, 979–984.
- (9) Jiménez, E.; Casas, H.; Segade, L.; Franjo, C. Surface tensions, refractive indexes and excess molar volumes of hexane + 1-alkanol mixtures at 298.15 K. J. Chem. Eng. Data 2000, 45, 862–866.
- (10) Kumar, A.; Mohandas, V. P.; Ghosh, P. K. Experimental surface tensions and derived surface properties of binary mixtures of water + alkoxyethanols (C_1E_m , m = 1, 2, 3) and water + ethylene glycol dimethyl ether ($C_1E_1C_1$) at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data **2003**, 48, 1318–1322.
- (11) Redlich, O.; Kister, A. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (12) Tsierkezos, N. G.; Filippou, A. C. Thermodynamic investigation of *N*,*N*-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. *J. Chem. Thermodyn.* **2006**, *38*, 952– 961.

Received for review November 5, 2006. Accepted March 3, 2007. The authors acknowledge the financial support of the Sun Yat-sen University, the National Key Basic Research and Development Program of China (G 2000026302).

JE060490W